James A Marrs

Professor and Director of Graduate Studies, Biology

Education

University of Illinois at Urbana-Champaign, B. S. in Biology 1984.

University of Illinois at Chicago, Ph. D. in Biology 1991.

Stanford University School of Medicine, Postdoctoral training in epithelial cell biology, 1991-1994.

Current Research

My research laboratory uses zebrafish to model fetal alcohol syndrome (FAS; the most severe clinically defined birth defect syndrome caused by prenatal ethanol exposure, which is a subset of fetal alcohol spectrum disorder, FASD, an inclusive term for all defects induced by perinatal maternal ethanol consumption).  Our experiments and those from other laboratories show that zebrafish is a useful model organism for mechanistic experiments.  A detailed understanding of alcohol-induced birth defects will guide us toward future clinical interventions.  Our studies are focused on understanding which genes are critical for producing the birth defects among the myriad of gene expression changes induced by ethanol exposure.  Our experiments also use rescue treatments like retinoic acid and folic acid that can restore or prevent ethanol induced defects.  Molecular genetics and developmental biology studies are used to examine cellular and molecular events during early development, eye development and cardiogenesis.

Dr. Swapnalee Sarmah leads the early development and cardiogenesis projects. (http://biology.iupui.edu/people/swapnalee-sarmah)

Select Publications

Sarmah, S., Muralidharan, P., and Marrs J. 2016. Embryonic ethanol exposure dysregulates BMP and Notch signaling, leading to persistent atrio-ventricular valve defects in zebrafish. PLOS ONE 11: e0161205.

Sarmah, S., Chism, G. W., Vaughan, M. A., Muralidharan, P., Marrs J. A. and K. A. Marrs. 2016. Using Zebrafish to Implement a Course-Based Undergraduate Research Experience (CURE) to Study Teratogenesis in Two Biology Laboratory Courses. Zebrafish 13: 293-304.

Muralidharan, P., Sarmah, S., and J. A. Marrs. 2015. Zebrafish retinal defects induced by ethanol expousure are rescued by retinoic acid and folic acid supplement. Alcohol 49: 149-163.

Sarmah, S., and J. A. Marrs. 2013. Complex cardiac defects after ethanol exposure during discrete cardiogenic events in zebrafish: Prevention with folic acid. Developmental Dynamics 242: 1184-1201.

Sarmah S., Muralidharan P, Curtis C, McClintick J. N, Buente B, Holdgrafer D, Ogbeifun O, Olorungbounmi O, Patino L, Lucas R, Gilbert S, Groninger E, Arciero J, Edenberg H. J., and J. A. Marrs. 2013. Ethanol exposure disrupts extraembryonic microtubule cytoskeleton and embryonic blastomere cell adhesion, producing epiboly and gastrulation defects. Biology Open 2: 1013–1021.

Song, S., Eckerle, S., Onichtchouk, D., Marrs, J. A., Nitschke, R., and W. Driever. 2013. Pou5f1-dependent EGF expression controls E-cad endocytosis, cell adhesion, and zebrafish epiboly movements. Developmental Cell. 24: 486–501.

Chen, Y., Londraville, R., Brickner, S., El-Shaar, L., Fankhauser, K., Dearth, C., Fulton, L., Sochacka, A., Bhattarai, S., Marrs, J. A., and Q. Liu. 2013. Protocadherin-17 function in Zebrafish retinal development. Dev Neurobiol. 73: 259-273.

Clendenon, S. G., Sarmah, S., Shah, B., Liu, Q., and J. A. Marrs. 2012. Zebrafish cadherin-11 participates in retinal differentiation and retinotectal axon projection during visual system development Developmental Dynamics 241: 442-454.

Liu, Q., M. R. Dalman, S. Sarmah, S. Chen, Y. Chen, A. K. Hurlbut, M. A. Spencer, L. Pancoe and J. A. Marrs. 2011. Cell Adhesion Molecule Cadherin-6 Function in Zebrafish Cranial and Lateral Line Ganglia Development. Developmental Dynamics 240: 1716-26.

Marrs, J. A., S. G. Clendenon, D. R. Ratcliffe, S. M. Fielding, Q. Liu and W. F. Bosron. 2010. Zebrafish fetal alcohol syndrome model: effects of ethanol are rescued by retinoic acid supplement.  Alcohol 44: 707-15.

Clendenon, S. G., Shah, B., Miller, C. A., Schmeisser, G., Walter, A., Gattone, V. H. Barald, K. F., Liu, Q. and J. A. Marrs. 2009. Cadherin-11 controls otolith assembly: evidence for extracellular cadherin activity. Developmental Dynamics 238: 1909-1922.

Lin, F., S. Chen, D. S. Sepich, J. R. Panizzi, S. G. Clendenon, J. A. Marrs, H. E. Hamm, and L. Solnica-Krezel. 2009. Galpha12/13 regulate epiboly by inhibiting E-cadherin activity and modulating the actin cytoskeleton. J. Cell Biol. 184: 909-921.

Liu, Q., J. A. Marrs, R. L. Londraville, and A. L. Wilson. 2008. Cadherin-7 function in zebrafish development. Cell Tissue Res. 334: 37-45.

Liu, Q., R. Londraville, J. A. Marrs, A. L. Wilson, T. Mbimba, T. Murakami, F. Kubota, W. Zheng, D. G. Fatkins. 2008. Cadherin-6 function in zebrafish retinal development. Dev Neurobiol. 68: 1107-1122.

Wilson, A. L., Y.-c. Shen, S.G. Babb-Clendenon, J. Rostedt, B. Liu, K. F. Barald, J. A. Marrs, and Q. Liu.  2007.  Cadherin-4 Plays a Role in the Development of Zebrafish Cranial Ganglia and Lateral Line System. Developmental Dynamics 236: 893-902.

Liu, Q., R. A. Frey, S. G. Babb-Clendenon, B. Liu, J. Francl, A. L. Wilson, J. A. Marrs, and D. L. Stenkamp.  2007.  Differential expression of photoreceptor-specific genes in the retina of a zebrafish cadherin2 mutant glass onion and zebrafish cadherin4 morphants.  Exp Eye Res. 84: 163-175.

Gopalakrishnan, S., M. A. Hallett, S. Atkinson, and J. A. Marrs.  2007.  aPKC-Par complex dysfunction and tight junction disassembly in renal epithelial cells during ATP-depletion. Am. J. Physiol. (Cell Physiol.) 292: C1094-C1102.

Babb-Clendenon S. G., Y.-c. Shen, Q. Liu, K. E. Turner, M. S. Mills, G. W. Cook, C. A. Miller, V. H. Gattone II, K. F. Barald, and J. A. Marrs.  2006.  Cadherin-2 participates in the morphogenenesis of the zebrafish inner ear. J. Cell Sci. 119: 5169-5177.

S. R. Young, C, Mumaw, J. A. Marrs, and D. G. Skalnik.  2006.  Antisense Targeting of CXXC Finger Protein 1 Inhibits Genomic Cytosine Methylation and Primitive Hematopoiesis in Zebrafish.  J. Biol. Chem. 281: 37034-37044.

Liu, B., Duff, R. J., Londraville, R. L., Marrs, J. A. and Q. Liu. 2006. Cloning and expression analysis of cadherin7 in the central nervous system of the embryonic zebrafish. Gene Expr Patterns. 7: 15-22.

Liu, Q., Duff, R. J., Liu, B., Wilson, A. L., Babb-Clendenon, S. G., Franci, J. and J. A. Marrs. 2006. Expression of cadherin10, a type II classic cadherin gene, in the nervous system of the embryonic zebrafish. Gene Expr Patterns. 6: 703-710.

Babb, S. G., Kotradi, S. M., Shah, B., Chiappini-Williamson, C., Bell, L. N., Schmeiser, G., Chen, E., Liu, Q. and J. A. Marrs.  2005. Zebrafish R-cadherin (Cdh4) controls visual system development and differentiation. Developmental Dynamics 233: 930-945.

Liu, Q., J. A. Marrs, E.  Azodi, A. E. Kerstetter, S. G. Babb, and L. Hashmi. 2004.  Differential expression of cadherins in the developing and adult zebrafish olfactory system. J Comp Neurol. 478: 269-281.

Babb, S. G. and J. A. Marrs.  2004.  E-cadherin regulates cell movements and tissue formation in early zebrafish embryos.  Developmental Dynamics 230: 263-277.

Review Articles:

Sarmah, S., Muralidharan, P. and Marrs, J. A. 2016. Common congenital anomalies: environmental causes and prevention with folic acid containing multivitamins. Birth Defects Res C Embryo Today108: 274–286.

Muralidharan, P., Sarmah. S., Zhou, F. C., and Marrs, J. A. 2013. Fetal Alcohol Spectrum Disorder (FASD) Associated Neural Defects: Complex Mechanisms and Potential Therapeutic Targets. Brain Sciences. 3 (2): 964-991.

Marrs, J. A.  2010. Branching morphogenesis: Rac signaling “PIX” tubulogenesis. Focus on “Pak1 regulates branching morphogenesis in 3D MDCK cell culture by a PIX and beta-1-integrin-dependent mechanism”. Am. J. Physiol. Cell Physiol. 299: C7-10.

Marrs, J. A. and Liu, Q.  2010.  Cadherin adhesion functions revealed in zebrafish.  In: K. Yoshida, Ed. Molecular and Functional Diversities of Cadherin/Protocadherin.  Research Signpost, Kerala, India.  pp. 213-229.